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A brief review of the recent developments of mode-coupling theory of dense 
fluids shows that the existing approximations can predict certain fundamental 
behavior of structural relaxation and transport that are characteristic of super- 
cooled liquids, but fall short of providing a dynamical description of the liquid- 
glass transition. Limitations of the theory are best investigated in the tem- 
perature region of crossover dynamics (Tx), which is distinctly above the glass 
transition temperature (Tg). 
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1. I N T R O D U C T I O N  

In recent years there has been much interest in the theoretical description 
of density fluctuations in fluids which have been either cooled or com- 
pressed beyond the freezing poir/t. Because these fluids are now more  dense 
than the normal  liquids, the problem of analyzing the dynamics of density 
fluctuations in these systems is considered a formidable challenge. One 
reason for the current excitement is the discovery that a certain self- 
consistent mode-coupl ing approximat ion  leads to a tractable description 
which shows a freezing transit ion where the system becomes nonergodic.  
The question is then raised as to whether one has achieved by this means 
a dynamical  theory of  the liquid-glass transition. 

The purpose of this contr ibut ion is to comment  on this development  
of the mode-coupl ing theory. Since the mode-coupl ing approximat ion  can 
be regarded as an extension beyond the Enskog approximat ion  in kinetic 
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theory, and kinetic theory has been a dominant part of E. G. D. Cohen's 
scientific interest, it is perhaps appropriate to consider, on this special occa- 
sion, how far one has proceeded with such an approach. The views offered 
below are not new, nor are they intended to be different from those that 
have been put forth in the literature; nevertheless, it is hoped that they 
provide a useful perspective on the current status of an intriguing problem 
in nonequilibrium statistical mechanics. 

2. M O D E - C O U P L I N G  A P P R O X I M A T I O N S  

The basic problem is to study the density fluctuations in an atomic 
fluid in equilibrium at arbitrary density n and temperature T. 2 For the 
present purpose we need consider only a schematic model of the mode- 
coupling formulation. Let F(k, t) denote the Fourier transform of the 
space-time density correlation function G(r, t) and let (p(z) be its Laplace 
transform 

q)(z) = i dt e TM F(t) (1) 

The wavenumber dependence will be suppressed, since it is not relevant to 
the discussion; if necessary, one can think of F(k, t) at k = ko, where ko is 
the wavenumber at the diffraction maximum. 

The calculation of q)(z) can be formulated in two ways. One is to 
derive a kinetic equation for the phase-space density correlation function 
whose momentum integral gives r 3 Equivalently, one can adopt the 
memory function approach of Zwanzig and Mori by introducing the 
memory function K(z), (1) 

- q o ( z ) - '  = z + K ( z )  (2) 

and further express K(z) in terms of its memory function M(z),  

-g22K(z)  -1 = z + M(z )  (3) 

where s kvo/x /S(k)  is a characteristic frequency of the fluid, Vo being 
the thermal speed and S(k)  the static structure factor with its maximum at 
k = k  o. 

In the self-consistent mode-coupling formulation one derives an 
approximate expression for M(z)  by essentially postulating that the decay 

2 See ref. 1 for a general discussion of the problem of density fluctuations from various 
theoretical standpoints. 

3 See ref. 2 for a review of the kinetic theory approach to density fluctuations in fluids. 
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of the memory function M(t) can be decomposed into two components, a 
short-time relaxation due to collisions among individual particles and a 
long-time decay associated with collective behavior such as motions of 
clusters of particles. The first component corresponds to the Enskog 
approximation where only uncorrelated binary collisions are considered. 
This part of M(t) is well known. (2) The long-time decay is treated by 
coupling different hydrodynamic modes such as density, current, and tem- 
perature fluctations; it is this part which makes the theory applicable at 
high densities or low temperatures. 

We shall be concerned here with two closely related but distinct mode- 
coupling approximations, which schematically can be written as 

and 

with 

M(z) ~- Mo(z ) + m(z) (4) 

Mo(t) = v6(t) (6) 

m(t) = 2iF(t) + )o2F2(t) (7) 

•(t) = ,~3F(t) J(t) (8) 

The memory function Mo(t) is the Enskog approximation, with v being the 
collision frequency. To focus attention on the collective behavior, we have 
taken the relaxation to be instantaneous, thereby ignoring the dynamical 
features on the time scale of the duration of binary collisions. The relaxa- 
tion function m(t) is the simplest mode-coupling treatment of collective 
effects; in the present model the coupling involves only linear and quadratic 
density modes. The density- and temperature-dependent coupling coef- 
ficients 2~1 and 22 will be treated as constants here, but, when needed, 
explicit expressions for them can be given involving the interatomic poten- 
tial function and the two- and three-particle radial distribution functions. 
The function A(t) arises when coupling between the density and 
longitudinal current fluctuations are taken into consideration, with J(t) 
being the longitudinal current correlation function and 23 another coupling 
coefficient. The presence of A is the distinction between the two approxima- 
tions, Eqs. (4) and (5). 

The remarkable properties of the self-consistent mode-coupling 
approximation were first demonstrated using Eq. (4), with 21 = 0 in Eq. (7), 
by Leutheusser ~3) and by Bengtzelius, G6tze, and Sj61ander. (4) It was 

re(z) 
M(z)  ~- MoIz) + (5) 

1 - A(z )  m ( z )  
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shown that the memory function contribution m(t) leads to an ergodic-to- 
nonergodic transition at a critical density nc or temperature To, at which 
point the diffusivity vanishes and the shear viscosity diverges with the 
appearance of a nonzero shear modulus. 4 Further studies (6'7)'5 and an 
equivalent formulation in terms of a nonlinear fluctuating hydrodynamic 
theory (9) have confirmed that this relatively simple hypothesis is capable of 
giving a rich spectrum of nonlinear relaxation and transport properties. We 
will henceforth refer to Eqs. (4) and (7), in which 21 = 0, as the LBGS 
approximation. 

The onset of nonergodicity signifies the freezing in of some of the 
structural degrees of freedom in the fluid, a transition that is regarded as 
a liquid-to-glass transition since the model contains no mechanism for 
crystallization. (3'4~ The origin of this transition is purely dynamical and can 
be interpreted as arising from a nonlinear feedback mechanism which leads 
to the localization of the particles. (1~ In the present formalism structural 
arrest occurs when F( t~  ~ ) = f  is no longer zero, or, in view of Eq. (1), 
~p(z) has a zero-frequency pole, ~p(z)~ 1/z. This can come about when 
m(z) ,,~ 1/z, so that M(z) becomes likewise singular. 

The second approximation, Eq. (5), results when one takes into 
account the coupling between density and current fluctuations in deriving 
the mode-coupling contribution to M(z). (t2'13) Thus, it can be regarded as 
an extension of the LBGS approximation. The effect of this coupling is seen 
to be a renormalization of the memory function such that the singular 
behavior of M(z) is cutoff; in other words, when A ~ O, M(z) no longer 
diverges like 1/z for small z even though m(z)~ 1/z, so the system always 
remains ergodic. On the other hand, it does not mean that the two 
approximations (4) and (5) necessarily have to give different results in the 
intermediate-time domain where significant slowing down in the relaxation 
occurs due to collective edffects. The complexity of Eq. (5) has thus far 
precluded much analytical analysis of its properties; there exist limited 
numerical results ~12'~4'15~ which suggest that in the time domains 
appropriate to neutron and light scattering measurements and molecular 
dynamics simulations, the two descriptions may be quite similar in the 
decay of F(t). 

3. COUPLING OF DENSITY FLUCTUATIONS 

The basic hypothesis of the mode-coupling formulation is that the part 
of M(t) representing the collective behavior, or the effects of correlated 

4 See ref. 5 for a recent review of the theories of the liquid-glass transition. 
5 See ref. 8 for an application of the mode-coupling approximation to binary systems. 
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collisions in the formalism of renormalized kinetic theory, (16) can be 
expressed as products of two hydrodynamic modes. This hypothesis cannot 
be justified in the sense of obtaining an estimate of the leading corrections 
to the approximation. Thus, validation of the various approximations has 
to rely on the general reasonableness of the predictions and, when feasible, 
on the comparison of model results with experimental or computer simula- 
tion data. 

Let us consider first those predictions of the LBGS model which are 
consistent with experiment or molecular dynamics simulation. At densities 
below no, the self-diffusion coefficient is predicted to have a power-law 
density dependence, D ~ ( n c - n )  ~, with exponent c~-1.76, and corre- 
spondingly the reciprocal of the shear viscosity tt behaves in the same 
way. (3'4) There exist diffusivity data for the supercooled liquid methyl- 
cyclohexane and from simulation results on hard-sphere and Lennard- 
Jones fluids which can be fitted to this power law(a); also, there are several 
"fragile" liquids whose viscosity in the supercooled region follows a tem- 
perature variation t /~ (T -To)  2, where To is a temperature distinctly 
greater than the glass transition point Tg. ~17) Thus, one may conclude that 
the density and temperature variation of the transport coefficients of simple 
fluids in the liquid and supercooled regions can be predicted reasonably 
well by the LBGS approximation. This by itself is already a significant 
improvement over the Enskog theory, which is generally valid up to about 
half the liquid density and is known to fail at around the triple-point 
density.(18) 

Numerical calculations of the density correlation function F(k, t) have 
been performed for the LBGS model (19) and the results at various densities 
directly compared with molecular dynamics simulation data on a Lennard- 
Jones system. (a~ It is found that while both model and simulation results 
for the decay of F(t) show a characteristic slowing down due to structural 
relaxation, the densities at which similar behavior sets in do not 
correspond very well; specifically, the model seems to predict the onset of 
structural arrest at a lower density compared to the simulation results. 

The more general approximation of Eqs. (4) and (7) with nonzero 2~ 
and 22 also has been analyzed in some detail. (7"2') It was shown that with 
2L # 0  the model exhibits scaling and stretching behavior characteristic of 
the e relaxation, (22) behavior typical of systems near the liquid-glass 
transition. The property of scaling means F(t) can be written in the form 
of F(t)=A(t/r), where A is a universal or master function and relaxation 
time r is a parameter which accounts for all the temperature dependence. 
Stretching, on the other hand, manifests in a nonexponential decay of F(t), 
F(t)=Foexp[-( t /z)~],  with 0< /~<  1. It is rather remarkable that the 
approximation of Eqs. (4) and (7) can predict such behavior, (7) which, 
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moreover, have been found to have experimental correspondence in 
inelastic neutron scattering studies (ref. 23; also the discussion in ref. 26). If, 
instead of Eq. (7), one writes m(t) = F(F(t)), where F is a mode-coupling 
functional, a polynomial with nonnegative coefficients 21, 42 ..... then one 
can even discuss the phenomenon of/3 relaxation, which has been observed 
in dielectric loss spectra (~4) and is also characterized by a broad distribu- 
tion of relaxation rates. ~25) 

The present assessment of the validity of the mode-coupling 
approximation therefore finds the correct prediction of several fundamental 
features of relaxation and transport behavior which have been observed 
in supercooled liquids. The harder question of whether the ideal glass 
transition predicted by the LBGS model has anything to do with the glass 
transition observed experimentally has not been answered unambiguously. 
A major difficulty is that the definition of the latter depends on the physical 
property one is considering, and different changes in structural, thermo- 
dynamic, or transport properties have been used to characterize the glass 
transition in various measurements. Since the ideal glass transition is 
purely dynamical in origin, it seems natural to examine its relation to the 
behavior of a transport coefficient, the shear viscosity coefficient r/. In this 
context it is conventional to define a glass transition temperature Te as that 
at which q has the value of 1013 P. The question then becomes whether the 
transition predicted by the LBGS model is capable of describing the 
magnitude and the temperature variation of r/ in the region near Tg. In 
other words, is it reasonable to identify Tc with Tg? 

When the question is posed in this manner it is clear that from the 
theoretical side the difference between the two approximations, Eqs. (4) 
and (5), can be quite important; moreover, one needs to obtain numerical 
results for r/ that can be compared with experiment or computer simulation 
data. From the experimental side it has been pointed out by Taborek 
et aL (17) that the shear viscosity coefficients of a number of supercooled 
liquids all show a typical behavior of following a power-law temperature 
variation, with exponent approximately 2, in the regime where q has 
increased to about 10 P, and that at lower temperatures r/increases much 
more rapidly. It was noted that by extrapolating the data in the low-r/ 
region to infinite viscosity one obtains a characteristic temperature which 
these authors denoted as T o . The significance of To is that it is the "transi- 
tion temperature" in the supercooled region separating the two charac- 
teristic behaviors of the shear viscosity. Thus, 17 behaves like the prediction 
of LBGS for T >  T o , while in the region of T <  To, the data show an 
increase by several orders of magnitude until one reaches Tg. Furthermore, 
the latter increase occurs over a considerable range of temperature, so To 
is well separated from Tg, and in some cases T O ~ 2Tg. O7) 
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To our knowledge, only one numerical calculation of q using an 
approximation similar to Eq. (5) (12) has been reported. (14) From the rather 
limited results obtained, one sees that relative to its value in the normal 
liquid state, t/ in the supercooled region can show increases of a factor of 
10-100, but not several orders of magnitude. The implication is therefore 
that the existing mode-coupling approximation, in the form of either 
Eq. (4) or Eq. (5), cannot describe the sharp increase of t/ in the tem- 
perature region below To. This conclusion actually can be anticipated, 
since it is well recognized that activated-state dynamics is not taken into 
account in the LBGS model. For the extended model, Eq. (5), one may 
regard the presence of A as the one-phonon contribution to phonon- 
assisted hopping processes(26); nevertheless, it seems unlikely that the 
model can adequately describe the effects of particles hopping over local 
potential minima, motions which surely must dominate the dynamical 
behavior near Tg. 

4. THE T~ PROBLEM 

If it is correct that the present mode-coupling approximation does not 
apply to the laboratory glass transition, one may ask next, What is the 
significance of the temperature region near To ? The behavior of t/suggests 
that To delineates a crossover region where the particle motions apparently 
change from continuous fluidlike displacements to barrier hopping between 
potential minima. Such a picture of viscous flow was considered some 
30years ago by Goldstein. ~27~ Within this scenario one may think of a 
broad dynamical transition which signals the onset of potential barriers. It 
has been suggested (28) to label the crossover transition by the temperature 
Tx instead of T o to avoid confusion with a parameter in the well-known 
Vogel-Fulcher expression for tt or D. 

There is evidence in various forms pointing to the existence of a cross- 
over transition. A molecular dynamics study of compressed Lennard-Jones 
fluids has revealed such a behavior, the transition being charactyerized by 
a decrease in the compressibility, a change in the density variation of D, 
and the onset of a slowly decaying component in F(t), all occurring at a 
density well below that required to bring the diffusivity down to typical 
values for glasses. (29) Another molecular dynamics study of local stress fluc- 
tuations in quenched liquids showed the onset of spatial correlation effects 
at a characteristic temperature considerably above T~. (3~ In recent studies 
of spin-glass models it has been found that two transition temperatures can 
be identified, a dynamical transition at higher temperature which is 
associated with the appearance of barriers in the local energy surface and 
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an equilibrium transition at a lower temperature where the configurational 
entropy vanishes. (31) 

5. C O N C L U D I N G  R E M A R K S  

We will close this commentary with two thoughts. The first is that an 
appropriate test of the mode-coupling approach should be carried out in 
the supercooled region Tx and not in the region near Tg. The extended 
model, Eq. (5), should be studied to see if the effects of the cutoff of the 
nonergodic transition are numerically significant; in this respect com- 
parison with molecular dynamics data on F(t )  will be valuable. 

The second thought is that the mode-coupling approximation was first 
developed to treat the collective aspects of collisional dynamics which are 
not taken into account by the Enskog approximation in the kinetic theory 
of thermal fluctuations; in particular, the approximation of coupling to 
density and current fluctuations was not invoked just for the purpose of 
describing the liquid-glass transition. Therefore, one should not be disap- 
pointed that this approach thus far has not led to a theory of the glass 
transition. Moreover, given that the validity of the approached has been 
previously demonstrated in the analysis of viscoelastic behavior in dense 
hard-sphere fluids (32) and diffusion-localization transition in the Lorentz 
model, (1~ its present success in describing the structural relaxation 
behavior of supercooled liquids is not without foundation. 
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